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Glossary
Orthonormal basis R = {e1,e2,e2}
Vector a = aiei

2nd-order tensor A∼ = Aij ei ⊗ ej

Transpose A∼
T = Ajiei ⊗ ej

Inverse A∼
−1 = A−1

ij
ei ⊗ ej

Transpose of the inverse A∼
−T = A−1

ji
ei ⊗ ej

Scalar product a · b =
3∑

i=1

aibi

Double contraction A∼ : B∼ =
3∑

i=1

3∑
j=1

Aij Bij

Tensorial product a ⊗ b = aibj ei ⊗ ej

Tensorial product A∼ ⊗ B∼ = Aij Bklei ⊗ ej ⊗ ek ⊗ el

Tensorial product A∼⊗B∼ = AilBjkei ⊗ ej ⊗ ek ⊗ el

Tensorial product A∼⊗B∼ = AikBjlei ⊗ ej ⊗ ek ⊗ el

Identity tensor (2nd-order) 1∼ = δij ei ⊗ ej

Identity tensor (4th-order) 1∼∼
= 1

2

(
δikδj l + δilδjk

)
ei ⊗ ej ⊗ ek ⊗ el
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474 17. Implementation of constitutive equations for single crystals in finite element codes

The objective of this chapter is to give a description of the most efficient
algorithms for the numerical implementation of crystal plasticity models
in finite element codes. Of course, this approach requires a large amount of
equations, which are provided in great detail. The specific notations used
are grouped in a special section at the end of the chapter.

17.1 General form for the constitutive equations

17.1.1 Variables describing constitutive equations

The eventual programming of material characteristics within a finite
element code will ideally respect the physical and mathematical founda-
tions in form. Proper representation naturally leads to a complete interface
between the global code design and the local (material). Essentially, this
representation entails defining the appropriate variables used to charac-
terize a material behavior [452]. These variables are listed below:

Input variables vIN. They are primary imposed problem variables over
which the behavior is integrated. These variables are computed at the
element level using the problem degrees of freedom. In standard me-
chanics, they usually correspond to strains (the measure will depend
on the problem formulation).

Output variables vOUT. These variables are the direct result of the time
integration of the constitutive equations which are then used to com-
pute the internal forces at the elementary level. In standard mechanics,
they usually correspond to stresses (the measure will depend on the
problem formulation).

Internal/Integrated variables vin. These variables represent quantities
used to describe the material state. They often are expressed as ther-
modynamic state variables [510,818]. These variables need to be time
integrated.

Auxiliary variables vaux. They encode interesting information which
does not directly define the material state. They are functions of vin
but do not need to be time integrated.

External Parameters EP. These parameters are quantities which are user-
defined (prescribed) for the calculation but which influence the be-
havior. They, e.g., correspond to temperature for a purely mechanical
simulation.

Material coefficients CO. These coefficients are used to define the con-
stitutive behavior. Simple examples are elastic moduli, yield stress,
hardening modulus, etc. They can depend on other quantities so that

co = co (vin, vaux,ep) . (17.1)
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The class of behavior is thus characterized by the in–out variable types
vIN/vOUT. In “standard” mechanics they will correspond to small de-
formation strain tensor / Cauchy stress (ε∼/σ∼), Green–Lagrange strain /
second Piola–Kirchhoff stress (E∼/S∼), deformation gradient / first Piola–
Kirchhoff stress (F∼/Π∼ ), Hencky’s logarithmic strain / work conjugate
stress [943] (H∼ = 1

2 log
(
F∼

T .F∼
)
/T∼ ), etc. One has

ρε̇∼ : σ∼ = ρ0ε̇∼ : τ∼ = ρ0Ė∼ : S∼ = ρ0Ḟ∼ : Π∼ = ρ0Ḣ∼ : T∼ , (17.2)

where τ∼ is the Kirchhoff stress tensor and ρ/ρ0 = det F∼.
When using implicit simulation codes, it is also required to compute the

“consistent” tangent matrix which can be formally expressed as

[K] =
dΔvOUT

dΔvIN
, (17.3)

where ΔvOUT and ΔvIN represent the increments of output/input vari-
ables over a finite time increment Δt . In “standard” mechanics, [K] corre-
sponds to a fourth-order tensor.

17.1.2 Integration methods

17.1.2.1 Explicit integration

The evolution of integrated variables vin is usually expressed as a set of
differential equations

v̇in = V(vin, t,ep,co, vaux). (17.4)

When considering this equation, one must indeed take into account that
ep, depends on time, co on vin, ep, and vaux, and vaux on vin. This can lead
to some complex formulation, and it is important to keep track of the de-
pendencies. Eq. (17.4) can therefore be rewritten in a more simple form
as

v̇in = V(vin, t). (17.5)

Eq. (17.5) can be integrated using well-known numerical techniques. De-
scribing these methods is indeed out of the scope of this text. Efficient
methods such as the Runge–Kutta methods are, for instance, described in
[180], and efficient implementations are now available. The main draw-
back of this method is that it does not provide a “consistent” tangent
matrix [K] so that specific developments are necessary to compute it. Note
that a perturbation method can be used, but this tends to be very time-
consuming as many integrations must be performed, possibly inaccurate
and strongly dependent on the selected perturbation.
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17.1.2.2 Implicit integration
Eq. (17.5) can be time integrated as

Δvin = V(vθ
in, tθ )Δt, (17.6)

where Δt is the time step and θ is a parameter such that 0 ≤ θ ≤ 1. The
notation xθ refers to the value of x at time t0 + θΔt where t0 is the time at
the beginning of the time step (so that x0 is the value of x at the beginning
of the time step and xθ = x0 + θΔx). For θ = 0, Eq. (17.6) corresponds to the
simple forward Euler integration scheme which is known to be unstable.
Stability is obtained provided θ > 1/2. Eq. (17.6) is then rewritten as

Δvin = V(v0
in + θΔvin, t0 + θΔt)Δt, (17.7)

so that it becomes obvious that this equation must be solved for the un-
known value Δvin. The equation can be reformulated as

Rin = Δvin − V(v0
in + θΔvin, t0 + θΔt)Δt = 0, (17.8)

where Rin is the residual vector. Time integrating equation (17.4) becomes
equivalent to solving (17.8). This equation is usually highly nonlinear and
must be solved using, for instance, an iterative Newton–Raphson scheme.
This requires the evaluation of the Jacobian matrix [J ] associated to (17.8),
which is formally expressed as

[J ] =
∂Rin

∂Δvin
= [1] −Δt

∂Rin

∂vin

∣∣∣∣
θ

· ∂vin

∂Δvin
= [1] − θΔt

∂Rin

∂vin

∣∣∣∣
θ

. (17.9)

The evaluation of [J ] can be complex (see examples below). A perturbation
technique can be used, but will possibly suffer from the drawbacks that
have already been outlined above.

17.1.3 Consistent tangent matrix

Using the evaluation of the Jacobian matrix [J ] it becomes possible to
compute the consistent tangent matrix at a relatively low cost. Eq. (17.8)
was solved for fixed values of the input variables vIN. To evaluate the
infinitesimal variation of the integrated variables (δΔvin) caused by an in-
finitesimal variation of the input variables (δΔvIN), one must express that
the residual must remain equal to 0. So that

δRin =
∂Rin

∂Δvin
· δΔvin + ∂Rin

∂ΔvIN
· δΔvIN = [J ]s · δΔvin + [L]s · δΔvIN = 0,

(17.10)
where the subscript s denotes that the quantities are evaluated for Δvin so-
lution of Eq. (17.8) for the prescribed ΔvIN. Note that [J ] is a square matrix
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which can be inverted; [L] is usually not square. For the above equation,
the following stiffness matrix can be evaluated:

[K]in =
∂Δvin

∂ΔvIN
= − [J ]−1

s · [L]s . (17.11)

The output variables vOUT are, however, usually not a subset of vin. They
are rather expressed explicitly as functions of vin and vIN so that

δΔvOUT =
∂ΔvOUT

∂ΔvIN
· δΔvIN + ∂ΔvOUT

∂Δvin
· δΔvin (17.12)

=

(
∂ΔvOUT

∂ΔvIN
+ ∂ΔvOUT

∂Δvin
· [K]in

)
· δΔvIN, (17.13)

which leads to the final expression of the consistent stiffness matrix,
namely

[K] =
dΔvOUT

dΔvIN
=
∂ΔvOUT

∂ΔvIN
+ ∂ΔvOUT

∂Δvin
· [K]in . (17.14)

Examples of these derivations will be given below in the case of the imple-
mentation of the constitutive equations for single crystals.

17.2 A small strain constitutive model for single crystals

In the realm of elasto-plasticity of single crystals, it is commonly admit-
ted that elastic deformations are related to the stretching of interatomic
bonds, while plastic deformations are due to the gliding of linear defects
in the crystal lattice called dislocations. Dislocation glide occurs prefer-
entially on particular planes, which are denoted by unit normal nα , and
in particular directions, oriented by unit vector mα . The type of slip sys-
tems (plane/direction) vary upon the kind of crystal lattice (body-centered
cubic, face-centered cubic, hexagonal compact, etc.) considered. A con-
venient way to model plastic deformations in crystals consist in decom-
posing the overall plastic strain tensor into a sum of shear mechanisms
over the slip systems. The motion of a dislocation induces indeed an irre-
versible shear strain. Locally, for each slip system, the amount of plastic
shear strain can be quantified by a scalar value noted γ α . In addition, in
order to represent the population of dislocations in the crystal, a scalar dis-
location density per slip system ρα is defined. It corresponds to the length
of dislocation line per unit volume for a given systems and thus has a
unit of m/m3, i.e., m−2. Since dislocation densities are for most crystals in
the range 106–1016 m−2, it is numerically more convenient to manipulate
dimensionless dislocation densities defined as rα = εb2ρα . The scalar b de-
notes the norm of the Burgers vector, while ε is a nonphysical parameter
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used in order to scale dimensionless dislocation densities to numerical val-
ues that are close to the typical order of magnitudes encountered for strain
measures. Typically, ε = 106 can be used. Within a small strain framework,
such a model for the elasto-plasticity of single crystals yields the following
sets of input, output, and internal variables:

vIN : {ε∼}, vOUT : {σ∼}, vin : {ε∼e, γ α, rα}, (17.15)

where ε∼
e denotes the elastic strain tensor. Any increment of the elastic

strain tensor is linearly related to an increment of the Cauchy stress tensor
σ∼ ,

Δσ∼ = C∼∼
:Δε∼

e, (17.16)

where C∼∼
denotes the fourth-order elasticity tensor. From a numerical point

of view, it means that computing the unique output variable is a mere
postprocessing of one of the integration procedure result, namely Δε∼

e. As
discussed earlier, plastic deformation in crystals is accounted for by a set
of shear mechanisms acting on several slip systems. The driving force on a
given slip plane in a given slip direction is called the resolved shear stress
τα and is related to the symmetric Schmid tensor N∼

α
s as follows:

τα = σ∼ : N∼
α
s , N∼

α
s =

1

2
(mα ⊗ nα + nα ⊗ mα). (17.17)

Within the small-strain setting considered in this section, an additive split
of the strain tensor increment into elastic and plastic parts can be assumed.
In light of the plastic deformation mode described above, the plastic incre-
ment can in turn be decomposed into a sum of shear modes increments
over each slip system. It comes to

Δε∼ = Δε∼
e +Δε∼

p = Δε∼
e +

N∑
α=1

Δγ α

2
(mα ⊗ nα + nα ⊗ mα), (17.18)

where N denotes the total number of slip systems. Now, the amount of
plastic slip increment over each slip system relies on mainly two aspects.
First of all, it depends upon the resistance to dislocation glide, i.e., the
stress barrier to overcome in order to put dislocations into motion. Such
a barrier is called the critical resolved shear stress τα

c . Following [463], a
form of the critical resolved shear is assumed as

τα
c = τα

0 + αμ

√√√√ N∑
β=1

aαβrβ, (17.19)

where the first term τα
0 is a material parameter that varies upon tempera-

ture. The second term models the hardening related to forest dislocations.
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Dislocation motion in a given slip system can indeed be hindered by dis-
locations lying in the same or others systems. Such impediments depend
upon the nature of the junction or dipoles that two dislocations can form
and are characterized by the magnitude of the coefficients involved in the
interaction matrix asu. The second aspects on which relies the amount of
plastic increment on a given slip system is the resolved shear stress τα act-
ing on its slip plane and in its direction of dislocation glide; τα needs to be
large enough in order to overcome the aforementioned barrier τα

c . In other
words, the yield locus for a given slip system follows Schmid’s law and is
given by

f α = |τα| − τα
c . (17.20)

Because of the symmetries existing in crystal lattices, slip systems are
mostly not unique and hence crystal plasticity inherits a multisurface yield
domain by construction. It is well known that such a surface can have
sharp edges and even corners. Therefore, if one assumes an associated
flow rule, such that the plastic strain rate develops perpendicularly to the
yield locus, indeterminacy of the plastic strain rate arises at edges and
corners since the normal is not uniquely defined. In rate-independent crys-
tal plasticity, the ill-posed problem of determining the set of active slip
systems and associated slip rates was addressed in various manner. Nu-
merical methods involving generalized or pseudoinverses [944,1624], or
augmented Lagrangian formulations [1279] were proposed. Alternatively,
[458] developed a rate-independent formulation of crystal plasticity based
on a smooth elastic-plastic transition which involves a rate-independent
overstress. Another possible alternative to overcome slip indeterminacy
commonly encountered in the literature consists in smoothing out corners
and edges by using viscoplastic flow rules in order to determine active
systems and slip rates [174]. The latter option is adopted in what follows.
Using a Norton-type viscous flow rule, the plastic slip increment is there-
fore written as

Δγ α = sign
(
τα

)
Δt γ̇0Φ(f α), Φ(f α) =

〈
f α

τα
0

〉n

, (17.21)

where γ̇0 and n are viscosity material parameters. The induced viscous
overstress is indeed equal to τα

0 (Δγ α/(Δt γ̇0))1/n = τα
0 (γ̇ α/γ̇0)1/n. Using

large values for both parameters allows pushing such a rate-dependent
model towards a quasi-rate-independent limit. However, from a numeri-
cal point of view, increasing these parameters without precaution renders
the set of differential equations overly stiff and prevents from the pos-
sibility of using large time steps. Finally, in order to close the system of
equations, evolution equations for the dislocation densities rα need to
be defined. These evolutionary laws are based on two main phenomena,
namely storage and recovery of dislocations [1407,734]. Storage occurs
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by pinning of dislocations after they have glided over a certain mean
free path, controlled by the dimensionless material parameter κ . Recovery
takes place by annihilation of screw dislocations thanks to cross-slip. The
dimensionless material parameter Gc characterizes the distance at which
annihilation can occur. The increment of dislocation density is related to
the plastic slip increment on the same slip system and dislocation densi-
ties on all slip systems as follows:

Δrα = |Δγ α|
⎛
⎝ 1

κ

√√√√ N∑
β=1

bαβrβ − Gcr
α

⎞
⎠ , (17.22)

where bsr denotes another interaction matrix characterizing dislocation
storage.

Over a time increment, we recall that the unknowns to be determined
are the increments of integrated variables, namely Δε∼

e, Δγ α , and Δrα . The
set of nonlinear differential equations defined in Eqs. (17.18), (17.21), and
(17.22) can be recast in a set of residuals Rin as follows:

Rin =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rε∼
e = Δε∼

e +Δε∼
p −Δε∼,

Rγ α = Δγ α − sign (τα)Δt γ̇0Φ(f α),

Rrα = Δrα − |Δγ α|
⎛
⎝ 1

κ

√√√√ N∑
β=1

bαβrβ − Gcr
α

⎞
⎠ .

(17.23)

In order to solve Rin = 0 by Newton’s method, the Jacobian matrix of
Eq. (17.23) can be calculated as follows:

[J ] =
∂Rin

∂Δvin
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂Rε∼
e

∂Δε∼
e

∂Rε∼
e

∂Δγ β

∂Rε∼
e

∂Δrβ

∂Rγ α

∂Δε∼
e

∂Rγ α

∂Δγ β

∂Rγ α

∂Δrβ

∂Rrα

∂Δε∼
e

∂Rrα

∂Δγ β

∂Rrα

∂Δrβ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (17.24)

• Rε∼
e

Rε∼
e = Δε∼

e +Δε∼
p −Δε∼, (17.25)

∂Rε∼
e

∂Δε∼
e

= 1∼∼
,

∂Rε∼
e

∂Δγ β
= N∼

β
s ,

∂Rε∼
e

∂Δrβ
= 0; (17.26)

• Rγ α

Rγ α = Δγ α − sign
(
τα

)
Δt γ̇0Φ(f α), (17.27)
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∂Rγ α

∂Δε∼
e

= −sign
(
τα

)
Δt γ̇0

∂Φα

∂f α

∂f α

∂τα

∂τα

∂σ∼
: ∂σ∼
∂Δε∼

e
(17.28)

= −Δt γ̇0n

(τα
0 )n

〈
f α

τα
0

〉n−1

N∼
α
s : C∼∼

, (17.29)

∂Rγ α

∂Δγ β
= δαβ, (17.30)

∂Rγ α

∂Δrβ
= −sign

(
τα

)
Δt γ̇0

∂Φα

∂f α

∂f α

∂τα
c

∂τα
c

∂Δrβ
(17.31)

= sign
(
τα

) Δt γ̇0n

(τα
0 )n

〈
f α

τα
0

〉n−1
αμaαβ

2

(
N∑

u=1

aαuru

)− 1
2

; (17.32)

• Rrα

Rrα = Δrα − |Δγ α|
⎛
⎝ 1

κ

√√√√ N∑
β=1

bαβrβ − Gcr
α

⎞
⎠ , (17.33)

∂Rrα

∂Δε∼
e

= 0, (17.34)

∂Rrα

∂Δγ β
= −sign

(
Δγ α

)
δαβ

⎛
⎝ 1

κ

√√√√ N∑
u=1

bαuru − Gcr
α

⎞
⎠ , (17.35)

∂Rrα

∂Δrβ
= δαβ − |Δγ α|

⎛
⎜⎝bαβ

2κ

(
N∑

u=1

bαuru

)− 1
2

− Gcδαβ

⎞
⎟⎠ . (17.36)

Following Eq. (17.14), the consistent tangent matrix can finally be com-
puted. As vOUT = σ∼ , vIN = ε∼, and σ∼ = C∼∼

: ε∼e, one has with block-matrix

notations:

∂ΔvOUT

∂ΔvIN
= 0,

∂ΔvOUT

∂Δvin
=

(
C∼∼

[0]

)
, [L]s =

∂Rin

∂ΔvIN
=

⎛
⎜⎝ −1∼∼

[0]

⎞
⎟⎠ ,

(17.37)
which leads to

[K] =
dΔvOUT

dΔvIN
=

dΔσ∼
dΔε∼

= −
(

C∼∼
[0]

)
. [J ]−1

s .

( −1∼∼
[0]

)
(17.38)

=
(

C∼∼
[0]

)
. [J ]−1

s .

(
1∼∼

[0]

)
, (17.39)
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where [J ]−1
s can be expressed as a block matrix

[J ]−1
s =

⎛
⎜⎝ L∼∼

e [. . . ]

[. . . ] [. . . ]

⎞
⎟⎠ (17.40)

so that the consistent tangent matrix can be more simply expressed as a
product of fourth-order tensors

[K] = C∼∼
: L∼∼

e. (17.41)

17.3 A finite-strain constitutive model for single crystals

The constitutive model of elasto-plasticity in single crystals presented
at small strains in the previous section is extended to finite strains in this
section. The physical foundations are essentially unchanged and, as a con-
sequence, attention is drawn to the numerical implications of the chosen
finite-strain framework. The latter is based on the multiplicative decom-
position of the deformation gradient F∼ into an elastic part E∼ and a plastic
part P∼ [814,901]. The sets of input, output, and internal variables are re-
spectively chosen as

vIN : {F∼}, vOUT : {Π∼ }, vint : {E∼, γ α, rα}. (17.42)

Compared to previous section, ε∼ is replaced by F∼, and accordingly its
work-conjugate σ∼ is replaced by the first Piola–Kirchhoff stress Π∼ . It is
recalled that Π∼ is connected to the Cauchy stress tensor through

Π∼ = det F∼σ∼ · F∼
−T . (17.43)

The elastic small strain tensor ε∼
e is replaced by E∼. It can already be noted

that the stress and strain measures considered in this formulation are no
longer necessarily symmetric. According to the multiplicative decomposi-
tion of F∼, elastic and plastic velocity gradients L∼

e and L∼
p can be introduced

as follows:

F∼ = E∼ · P∼, L∼ = Ḟ∼ · F∼
−1 = L∼

e + E∼ · L∼
p · E∼

−1, (17.44)

L∼
e = Ė∼ · E∼

−1, L∼
p = Ṗ∼ · P∼

−1 =
N∑

α=1

γ̇ αmα ⊗ nα. (17.45)

The velocity gradient split is to be put in parallel with its small-strain coun-
terpart in Eq. (17.18). The major difference here is the asymmetric character
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of the plastic velocity gradient. At this point, the thermodynamical back-
bone of the present model, that is eluded for conciseness, motivates intro-
ducing the elastic Green–Lagrange strain measure E∼

e
GL, the elastic second

Piola–Kirchhoff stress measure Π∼
e, and the Mandel stress measure Π∼

M as

E∼
e
GL =

1

2

(
E∼

T · E∼ − 1∼
)

, (17.46)

J = det F∼ = det E∼ · P∼ = det E∼ det P∼ = JeJp, (17.47)

Π∼
e = JeE∼

−1 · σ∼ · E∼
−T = J−1

p E∼
−1 · S∼ · P∼

T , (17.48)

Π∼
M = E∼

T · E∼ ·Π∼ e. (17.49)

The state law equation (17.16) is replaced at finite strains by

ΔΠ∼
e = C∼∼

: ΔE∼
e
GL, (17.50)

while Π∼
e is power-conjugate to the elastic Green–Lagrange strain rate

and Π∼
M is power-conjugate to the plastic velocity gradient Ṗ∼ · P∼

−1. There-
fore the driving forces for plastic slip activity, namely the resolved shear
stresses τα , are defined as follows:

τα = Π∼
M : N∼

α, N∼
α = mα ⊗ nα, (17.51)

where N∼
α corresponds to the asymmetric Schmid tensor. It is worth noting

that, although the definitions of resolved shear stresses are slightly gener-
alized in Eq. (17.51) compared to (17.17), the formalism setup for crystal
plasticity at small strains remains valid at finite strains. In other words,
Eqs. (17.19), (17.20), (17.21), and (17.22) stay unchanged. From Eqs. (17.44)
and (17.45), and straightforward algebraic manipulations, one obtains the
only formally modified residual equation, namely that related to the incre-
mental elastic-plastic split,

RE∼ = ΔE∼ −ΔF∼ · F∼
−1 · E∼ − E∼ ·

(
N∑

α=1

Δγ αN∼
α

)
= 0. (17.52)

Since only the first residual equation is formally modified in Eq. (17.23),
only the terms in the first row and first column of the Jacobian matrix [J ]
are affected:

[J ] =
∂Rin

∂Δvin
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂RE∼
∂ΔE∼

∂RE∼
∂Δγ β

∂RE∼
∂Δrβ

∂Rγ α

∂ΔE∼

∂Rγ α

∂Δγ β

∂Rγ α

∂Δrβ

∂Rrα

∂ΔE∼

∂Rrα

∂Δγ β

∂Rrα

∂Δrβ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17.53)
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• RE∼

RE∼ = ΔE∼ −ΔF∼ · F∼
−1 · E∼ + E∼ ·

(
N∑

α=1

Δγ αN∼
α

)
, (17.54)

∂RE∼
∂ΔE∼

= 1∼∼
− (ΔF∼ · F∼

−1)⊗1∼∼
+ 1∼∼

⊗
(

N∑
α=1

Δγ αN∼
α

)T

, (17.55)

∂RE∼
∂Δγ β

= E∼ · N∼
β,

∂RE∼
∂Δrβ

= 0; (17.56)

• Rγ α

Rγ α = Δγ α − sign
(
τα

)
Δt γ̇0Φ(f α), (17.57)

∂Rγ α

∂ΔE∼
= −sign

(
τα

)
Δt γ̇0

∂Φα

∂f α

∂f α

∂τα

∂τα

∂Π∼
M

: ∂Π∼
M

∂C∼
e

: ∂C∼
e

∂E∼
: ∂E∼
∂ΔE∼

, (17.58)

C∼
e = E∼

T · E∼ (17.59)

∂Π∼
M

∂C∼
e

=
∂

[
C∼

e ·
(

C∼∼
: 1

2 (C∼
e − 1)

)]

∂C∼
e

= (1∼⊗Π∼
eT ) + 1

2
(C∼

e⊗1∼) : C∼∼
, (17.60)

∂C∼
e

∂E∼
= 1∼⊗E∼

T + E∼
T ⊗1∼,

∂E∼
∂ΔE∼

= 1∼∼
, (17.61)

∂Rγ α

∂ΔE∼
= −Δt γ̇0n

(τα
0 )n

〈
f α

τα
0

〉n−1

N∼
s :

(
1∼⊗Π∼

e + 1

2
(C∼

e⊗1∼) : C∼∼

)
: (1∼⊗E∼

T + E∼
T ⊗1∼);

(17.62)

• Rrα

Rrα = Δrα − |Δγ α|
⎛
⎝ 1

κ

√√√√ N∑
β=1

bαβrβ − Gcr
α

⎞
⎠ , (17.63)

∂Rrα

∂ΔE∼
= 0. (17.64)

The derivatives which intervene in the consistent tangent matrix are
then calculated as follows:

∂ΔvOUT

∂ΔvIN
=
∂ΔΠ∼
∂ΔF∼

=
∂Δ

(
Jσ∼ · F∼

−T
)

∂ΔF∼
(17.65)
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= J (σ∼ · F∼
−T ) ⊗ F∼

−T + J (σ∼⊗1∼) : (−F∼
−T ⊗F∼

−1), (17.66)

∂ΔvOUT

∂Δvin
=

(
∂ΔΠ∼
∂ΔE∼

[0]
)

, (17.67)

∂ΔΠ∼
∂ΔE∼

=
∂Δ

(
Jσ∼ · F∼

−T
)

∂ΔE∼
= J (1∼⊗F∼

−1) : ∂Δσ∼
∂ΔE∼

, (17.68)

∂σ∼
∂E∼

= −J−1
e (E∼ ·Π∼ e · E∼

T ) ⊗ E∼
−T + J−1

e 1∼⊗(Π∼
e · E∼

T )T

+ J−1
e (E∼⊗E∼) : ∂Π∼

e

∂E∼
+ J−1

e

[
(E∼ ·Πe)⊗1∼

] : (1∼⊗1∼), (17.69)

∂Π∼
e

∂E∼
=

∂Π∼
e

∂E∼
e
GL

: ∂E∼
e
GL

∂E∼
, (17.70)

∂Π∼
e

∂E∼
e
GL

= C∼∼
, (17.71)

∂E∼
e
GL

∂E∼
=

1

2
(1∼⊗E∼

T + E∼
T ⊗1∼), (17.72)

[L]s =
∂Rin

∂ΔvIN
=

⎛
⎝

∂RE∼
∂ΔF∼
[0]

⎞
⎠ , (17.73)

∂RE∼
∂ΔF∼

= −1∼⊗
(

E∼
T · F∼

−T
)

+ (ΔF∼⊗E∼
T ) : (F∼

−1⊗F∼
−T ). (17.74)

17.4 Applications to a single-crystal turbine blade and a
cylinder under torsion

The crystal elasto-plasticity model at finite strain presented in Sec-
tion 17.3 is implemented in the finite element software Z-set [103,1]. The
model is applied to predict the behavior of a single-crystal turbine blade
and a single-crystal cylinder under torsion.

17.4.1 Single-crystal turbine blade

An interesting industrial application of the finite element implementa-
tion of crystal plasticity constitutive equations is, for instance, the compu-
tation of the behavior of a nickel-based superalloy single-crystal turbine
blade. In service, such turbine blades are submitted to important centrifu-
gal forces induced by the fast rotation (∼ 20000 RPM) of the turbine disk
they are attached to. In addition, during a single flight their operating
temperature can vary over three orders of magnitude. For sake of sim-
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TABLE 17.1 Numerical values of material parameters used for the simulation of a
nickel-based superalloy single-crystal turbine blade.

C11 C12 C44 τ0 n γ̇0 μ Gc κ

(GPa) (GPa) (GPa) (MPa) (—) (s−1) (GPa) (—) (—)
204 125 112 235 15 200 65.6 10.4 42.8

rs
0 a1 a2 a3 a4 a5 a6 bsu

s �=u buu

5.38e-5 0.124 0.124 0.07 0.625 0.137 0.122 1 0

plicity, we consider here a constant and uniform temperature and focus
on the mechanical behavior of the blade as the rotation rate ω of the tur-
bine linearly and indefinitely increases. Of course, such a loading history
is unrealistic for nominal in-service conditions and is rather to be seen as a
demonstration of the capabilities of the finite element model. Cubic elastic-
ity moduli, critical resolved shear stress, and viscoplastic flow parameters
identified at 650°C on the nickel-based superalloy DS200 by [293] are used.
Octahedral slip systems families {110}〈111〉 are considered. Instead of the
phenomenological kinematic hardening law used in [293] based on the
work of [936], the dislocation-based isotropic hardening law presented in
Section 17.2 is used. The material parameters are presented in Table 17.1. A
fictional turbine blade geometry is meshed with 191147 linear tetrahedral
elements reduced integrated with one Gauss point. The crystal is oriented
such that the crystal directions triplet ([100] − [010] − [001]) coincide with
the orthogonal basis vectors triplet (X1,X2,X3).

The simulated von Mises equivalent stress field and cumulated plas-
tic slip field are shown in Fig. 17.1 at an angular velocity ω = 30000 RPM.
To reach this velocity, a linear ramping was used with ω̇ = 31.9 RPM/s.
Highly loaded zones are located at notches present in the foot and at the
junction between the foot and the body of the turbine blade as expected.
Stress concentrations are also visible in the vicinity of cooling holes. In-
terestingly, the most plastically deformed region lies a little above the
junction between the foot and the body of the turbine blade. This region
concentrating most of plastic slip spreads across the whole cross-section
orthogonal to the radial direction of the turbine X3. In particular, the high-
est levels of plastic deformations are located in the vicinity of cooling holes
nearest to the turbine blade foot.

17.4.2 Single-crystal cylinder under torsion

The authors of [1026,457] investigated experimentally and numerically
the behavior of single-crystal wires in torsion. They showed the existence
of plastic slip gradients along the radius of wires, as well as along their
circumference. The latter gradient is due to the anisotropic activation of
slip systems. As already pointed out by [1026], the presence of circum-
ferential strain gradients, visible in experiments, could not be predicted
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FIGURE 17.1 Simulated (a) von Mises stress and (b) cumulated plastic slip contours in a
single crystal turbine blade.

by any quadratic yield criterion, such as, e.g., Hill’s criterion. On the con-
trary, by computing analytically maximum Schmid factor maps, it appears
clearly that Schmid’s criterion predicts that some regions will yield earlier
than others. As an example, octahedral slip systems families {110}〈111〉
are considered. Four different orientations of the crystal in the cylinder
are chosen such that the crystal directions triplets ([100] − [010] − [001]),
([001] − [11̄0] − [110]), ([11̄0] − [112̄] − [111]), and ([121̄] − [2̄10] − [125])
respectively coincide with the orthogonal basis vectors triplet (X1,X2,X3).
These crystal orientations are later denoted 〈100〉, 〈110〉, 〈111〉, and 〈125〉,
respectively. The cylinder axis is aligned with X3. Fig. 17.2 displays the
maximum Schmid factor maps in the cross-section of these cylinders. Sec-
tors of maximum Schmid factor are indeed visible. Therefore, plastic slip
will preferentially be activated in such zones and lead to circumferential
plastic strain gradients. It should be noted that in a torsion test, the applied
torsion stress τθz increases linearly with the radial position from the center
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FIGURE 17.2 Maximum Schmid factor maps in the cross-section of single crystal cylin-
ders with the middle axis respectively initially aligned with 〈100〉, 〈110〉, 〈111〉, and 〈125〉
crystal directions.

TABLE 17.2 Numerical values of material parameters for the simulation of stainless
steel single crystal cylinders in torsion.

C11 C12 C44 τ0 n γ̇0 μ Gc κ

(GPa) (GPa) (GPa) (MPa) (—) (s−1) GPa) (—) (—)
199 136 105 88 20 1029 65.6 10.4 42.8

rs
0 a1 a2 a3 a4 a5 a6 bsu

s �=u buu

5.38e-5 0.124 0.124 0.07 0.625 0.137 0.122 1 0

of the cylinder. As a consequence, a radial gradient of plastic activity is
also to be expected.

The dislocation density based crystal plasticity model presented above
is applied to pursue investigation of the behavior of single crystal cylin-
ders under torsion. A single crystal cylinder of length L0 and radius R0 is
put under torsion by prescribing nil displacements to its bottom face and a
rotation rate to its upper face. In cylindrical coordinates, the displacement
boundary conditions are written as

ur (r, θ, z = 0) = 0, (17.75)

uθ (r, θ, z = 0) = 0, uθ (r, θ, z = L0) = rθ̇ , (17.76)
uz(r, θ, z = 0) = 0. (17.77)

The rotation rate θ̇ is taken as 2π × 10−4 s−1. Material parameters rele-
vant for face-centered cubic (FCC) austenitic stainless steel single crystals
with octahedral slips systems were used and are listed in Table 17.2. Cylin-
ders are meshed with 12800 quadratic elements reduced integrated with 8
Gauss points.

The fields of cumulated plastic slip obtained with these four orienta-
tions are plotted in Fig. 17.3 on the outer surface in (a)–(d) and in the
middle cross-section at z = L0/2 in (e)–(h). The fields are plotted on the
deformed mesh for a θ = 90° rotation of the top face with respect to the
initial configuration. A characteristic patterning of plastic slip can indeed
be observed. First of all, a radial gradient of plastic strain is obtained as
expected. Additionally, plastic strains are also heterogeneous on the cir-
cumference of the single crystal cylinders because of the heterogeneity of
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FIGURE 17.3 Simulated cumulated plastic slip contours on the outer surface (a)–(d) and
in the middle cross-section (e)–(h) of single crystal cylinders at θ = 90°, with the middle axis
respectively initially aligned with 〈100〉, 〈110〉, 〈111〉, and 〈125〉 crystal directions and material
parameters presented in Table 17.2.

the maximum Schmid factor depicted in Fig. 17.2. “Soft zones” concentrate
most of plastic slip, while “hard zones” remain almost completely elastic.
The number and intensity of such zones varies with the orientation of the
crystal in the cylinder. For orientations 〈100〉 and 〈110〉, four “soft zones”
of equal plastic intensity and four “hard zones” are clearly visible. For
the 〈111〉 orientation, six zones of each kind and of equal intensities can
be observed. The 〈125〉 orientation displays a more complex pattern. It is
composed of two wide and intensely deformed “soft areas” and two ad-
ditional “soft zones” which seem to be splitting in two narrower regions.
Four “hard zones” are visible for this orientation.
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FIGURE 17.4 Simulated torque vs. shear strain curves for single crystal cylinders with the
middle axis respectively initially aligned with 〈100〉, 〈110〉, 〈111〉, and 〈125〉 crystal directions
and material parameters presented in Table 17.2.

In Fig. 17.4, we plotted the shear stress 2M/πR3
0 against the shear strain

θR0/L0, where M is the applied torque, for the four different crystal ori-
entations. The hardest response is obtained with the 〈100〉 orientation, for
which the maximum Schmid factor maps in Fig. 17.2 display the lowest
maximum values (≤ 1/

√
3). The second hardest response corresponds to

the 〈125〉 orientation for which it was shown in Fig. 17.2 that the maximum
Schmid factor in the cross section does not exceed 0.85. Furthermore, 〈110〉
and 〈111〉 orientations display similar apparent yield stresses. These two
orientations have indeed a maximum value of the maximum Schmid fac-
tors in the cylinder cross-section equal to 1. The 〈111〉 orientation appears
to be a little softer than the 〈110〉 orientation because its average maxi-
mum Schmid factor value is the largest. Therefore the plastic slip field is
the most heterogeneous for this orientation as seen in Fig. 17.3.

17.5 Extensions of constitutive equations: a reduced
micromorphic model for single crystals

Conventional elasto-plasticity is known to be size-independent. Such
an assumption is realistic when the size of the medium can be considered
large with respect to the characteristic length of deformation mechanisms.
However, it is hence unsuited in order to predict size effects arising at
small scales. Nonlocal models that naturally introduce material length
scales are therefore proficient extensions of conventional theories. They
mainly resort on integral or gradient enhancements of conventional con-
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stitutive equations. For example, among gradient-type formulations, the
micromorphic approach [455] can be followed in order to extend the con-
stitutive model for single crystals presented above. In this section, the
finite element implementation of a reduced micromorphic single-crystal
model at finite strains based on a scalar nonlocal variable is presented.
Following [1588], a possible choice of nonlocal variable in the context of
crystal plasticity is the cumulated plastic slip γcum defined as

γcum =
∫ t

0

N∑
α=1

|γ̇ α|dt . (17.78)

Its micromorphic counterpart, denoted γχ , is called microslip. The latter
is considered as an additional degree of freedom, on par with displace-
ment degrees of freedom, as well as an input variable of the material
behavior. Furthermore, the gradient of microslip Kχ = Gradγχ is equally
treated as an input variable. The generalized stresses, which are work con-
jugates of γχ and Kχ , are respectively denoted by S and M. Just as the
first Piola–Kirchhoff stress, they are output variables of the constitutive
model. In addition to the conventional internal variables, the cumulated
plastic slip γcum is treated as an additional variable to be integrated. To
summarize, the following sets of input, output, and internal variables are
considered:

vIN : {F∼, γχ ,Kχ }, vOUT : {Π∼ , S,M}, vin : {E∼, γ α, rα, γcum}. (17.79)

The thermodynamical derivation of the present model is detailed in
[844,1274]. It is based, first, on enrichment of the principle of virtual
power to higher-order contributions [509]. From this generalization,
one obtains a supplementary equilibrium equation and, for instance,
Neumann boundary condition for any subdomain D of the material
body

Div M − S = 0 ∀X ∈ D,

M = M · n0 ∀X ∈ ∂D,
(17.80)

where M is a generalized traction scalar, power conjugate to γ̇χ , and n0

the outward normal unit vector in the initial configuration. Solving the
weak form of Eq. (17.80), together with the conventional equilibrium equa-
tion and boundary condition (Div (Π∼ ) = 0 and T = Π∼ · n0, in the absence
of body forces), by finite elements can be done by following the proce-
dure described in [844]. The second ingredient is a enhanced free energy
potential ψ accounting for nonlocal contributions. Assuming a quadratic
nonlocal potential, the conventional state law in Eq. (17.50) is comple-
mented by two additional state laws for the generalized stresses S and
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M,

ΔS = −Hχ (Δγcum −Δγχ ), (17.81)
ΔM = AΔKχ , (17.82)

where Hχ and A are higher-order elasticity moduli; Hχ is a penalization
parameter which usually takes large values in order to enforce quasiequal-
ity between γχ and γcum; A has the units of MPa·mm2 and therefore bears
the material characteristic length. The major outcome of the gradient-
enhanced free energy potential is the modification of the residual me-
chanical dissipation, which now involves higher-order terms. It ensures
an extension of the yield criteria in Eq. (17.20) and, equally, of the plastic
flow rules in Eq. (17.21) as follows:

f α
χ = |τα| − (τα

c − S) = |τα| − (τα
c + Hχ (γcum − γχ )), (17.83)

Δγ α = sign
(
τα

)
Δt γ̇0Φ(f α

χ ), Φ(f α
χ ) =

〈
f α

χ

τα
0

〉n

. (17.84)

The generalized scalar stress S, depending on its sign, acts locally as an
additional hardening or softening contribution. By combining Eqs. (17.80)
and (17.82), we obtain S = Div (AGradγχ ). Therefore, locally, a positive
curvature of γχ induces softening; conversely, a locally negative curvature
of γχ introduces additional hardening. Increments of cumulated plastic
slip must satisfy Eq. (17.78), which gives

Δγcum =
N∑

α=1

|Δγ α|. (17.85)

The set of residual equations for the reduced micromorphic single-crystal
model at finite strains become

Rin =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RE∼ = ΔE∼ −ΔF∼ · F∼
−1 · E − E∼ ·

(
N∑

α=1

Δγ αN∼
α

)
,

Rγ α = Δγ α − sign
(
τα

)
Δt γ̇0Φ(f α

χ ),

Rrα = Δrα − |Δγ α|
⎛
⎝ 1

κ

√√√√ N∑
β=1

bαβrβ − Gcr
α

⎞
⎠ ,

Rγcum = Δγcum −
N∑

α=1

|Δγ α|.

(17.86)

It is remarkable how corresponding residuals in Eq. (17.86) are similar
to their conventional counterparts; RE∼ and Rrα are indeed completely un-
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changed, while Rγ α is only slightly modified, and the straightforward term
Rγcum is added. The Jacobian matrix [J ] can accordingly be computed with-
out much difficulty, since only the last row and column need to be given,
while other terms remain formally unchanged given that f α is replaced
by f α

χ :

[J ] =
∂Rin

∂Δvint
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂RE∼
∂ΔE∼

∂RE∼
∂Δγ β

∂RE∼
∂Δrβ

∂RE∼
∂Δγcum

∂Rγ α

∂ΔE∼

∂Rγ α

∂Δγ β

∂Rγ α

∂Δrβ

∂Rγ α

∂Δγcum

∂Rrα

∂ΔE∼

∂Rrα

∂Δγ β

∂Rrα

∂Δrβ

∂Rrα

∂Δγcum

∂Rγcum

∂ΔE∼

∂Rγcum

∂Δγ β

∂Rγcum

∂Δrβ

∂Rγcum

∂Δγcum

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17.87)

After straightforward derivations, one obtains

∂RE∼
∂Δγcum

= 0, (17.88)

∂Rγ α

∂Δγcum

= −sign
(
τα

)
Δt

∂Φα

∂f α
χ

∂f α
χ

∂γcum

= sign
(
τα

) Δt γ̇0n

(τα
0 )n

〈
f α

χ

τα
0

〉n−1

Hχ,

(17.89)
∂Rrα

∂Δγcum

= 0, (17.90)

∂Rγcum

∂ΔE∼
= 0, (17.91)

∂Rγcum

∂Δγ β
= −sign

(
Δγ β

)
, (17.92)

∂Rγcum

∂Δrβ
= 0, (17.93)

∂Rγcum

∂Δγcum

= 1. (17.94)

Since additional input and output variables are considered, the con-
sistent tangent operator incorporates the following additional deriva-
tives:
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• ∂ΔvOUT

∂ΔvIN

∂ΔΠ∼
∂ΔF∼

= see Eq. (17.66),
∂ΔΠ∼
∂Δγχ

= 0,
∂ΔΠ∼
∂ΔKχ

= 0,

∂ΔS

∂ΔF∼
= 0,

∂ΔS

∂Δγχ

= Hχ,
∂ΔS

∂ΔKχ

= 0,

∂ΔM
∂ΔF∼

= 0,
∂ΔM
∂Δγχ

= 0,
∂ΔM
∂ΔKχ

= A;

(17.95)

• ∂ΔvOUT

∂Δvin

∂ΔΠ∼
∂ΔE∼

= see Eq. (17.68),
∂ΔΠ∼
∂Δγ β

= 0,
∂ΔΠ∼
∂Δrβ

= 0,
∂ΔΠ∼

∂Δγcum

= 0,

∂ΔS

∂ΔE∼
= 0,

∂ΔS

∂Δγ β
= 0,

∂ΔS

∂Δrβ
= 0,

∂ΔS

∂Δγcum

= −Hχ,

∂ΔM
∂ΔE∼

= 0,
∂ΔM
∂Δγ β

= 0,
∂ΔM
∂Δrβ

= 0,
∂ΔM
∂Δγcum

= 0;
(17.96)

• [L]s =
∂Rin

∂ΔvIN

∂RE∼
∂ΔF∼

= see Eq. (17.74),
∂RE∼
∂Δγχ

= 0,
∂RE∼
∂ΔKχ

= 0,

∂Rγ α

∂ΔF∼
= 0,

∂Rγ α

∂Δγχ

= −sign
(
τα

) Δt γ̇0n

(τα
0 )n

Hχ,
∂Rγ α

∂ΔKχ

= 0,

∂Rrα

∂ΔF∼
= 0,

∂Rrα

∂Δγχ

= 0,
∂Rrα

∂ΔKχ

= 0,

∂Rγcum

∂ΔF∼
= 0,

∂Rγcum

∂Δγχ

= 0,
∂Rγcum

∂ΔKχ

= 0.

(17.97)


